Qdrant Vector Store Bad Request error

Describe the problem/error/question

Qdrant node connected to AI Agent node can’t retrieve the data.

What is the error message (if any)?

It says Bad Request

More details:

{ “headers”: {}, “url”: “https://XXXX.cloud.qdrant.io:6333/collections/cms-pages-1-1536/points/search”, “status”: 400, “statusText”: “Bad Request”, “data”: { “status”: { “error”: “Wrong input: Collection requires specified vector name in the request, available names: website-data” }, “time”: 0.000106996 } }

However there is no way to explicitly define vector name, the node provides the interface where I selected collection, so it should know it.

Please share your workflow

![image|690x355](upload://jYMFWNmNJPpcRtzaW3cB4bmWfSA.jpeg)

{
  "nodes": [
    {
      "parameters": {
        "agent": "conversationalAgent",
        "options": {
          "systemMessage": "You assist visitors of Luma online store - answer the questions related with its's products and generic information available.\n\nIf asked for products available in store you must limit your suggestions with what is available in this specific store (Luma Online Store), don't make generic references.\n\nStick strictly to the facts, don't make things up."
        }
      },
      "type": "@n8n/n8n-nodes-langchain.agent",
      "typeVersion": 1.7,
      "position": [
        220,
        0
      ],
      "id": "47922534-6084-4d26-a2af-075cd4dc88ea",
      "name": "AI Agent"
    },
    {
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {
          "responseFormat": "text"
        }
      },
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "typeVersion": 1.2,
      "position": [
        140,
        220
      ],
      "id": "3436fd8c-db5a-42f7-a964-b666ee1b9e9b",
      "name": "OpenAI Chat Model",
      "credentials": {
        "openAiApi": {
          "id": "23PvfovnyZJddfoj",
          "name": "OpenAi account"
        }
      }
    },
    {
      "parameters": {
        "contextWindowLength": 10
      },
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "typeVersion": 1.3,
      "position": [
        260,
        220
      ],
      "id": "b62ae874-c4ce-441f-9bcd-493ce7c2aca9",
      "name": "Window Buffer Memory"
    },
    {
      "parameters": {
        "options": {}
      },
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "typeVersion": 1.1,
      "position": [
        0,
        0
      ],
      "id": "373b204b-97c4-44d6-8d6a-f8f54773466b",
      "name": "When chat message received",
      "webhookId": "3f79263c-fb0f-4cb5-a502-85ae0ecb7ca1"
    },
    {
      "parameters": {
        "mode": "retrieve-as-tool",
        "toolName": "MagentoSandbox",
        "toolDescription": "Work with this data collection to find information about Luma online store products.\nUse it to answer product related questions.\nIt is the only source of data to answer about specific products that this store sells.\nStick to the facts you get, don't make things up.\n",
        "qdrantCollection": {
          "__rl": true,
          "value": "products-1-1536",
          "mode": "list",
          "cachedResultName": "products-1-1536"
        },
        "options": {
          "searchFilterJson": "{\n  \"should\": [\n    {\n      \"key\": \"metadata.batch\",\n      \"match\": {\n        \"value\": 12345\n      }\n    }\n  ]\n}"
        }
      },
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "typeVersion": 1,
      "position": [
        340,
        200
      ],
      "id": "fc4cc6a7-d2e6-4488-bc76-c81cf455794a",
      "name": "Qdrant Vector Store",
      "credentials": {
        "qdrantApi": {
          "id": "rlW4tdQaSHOuJ7cD",
          "name": "QdrantApi account"
        }
      }
    },
    {
      "parameters": {
        "options": {}
      },
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "typeVersion": 1.2,
      "position": [
        420,
        380
      ],
      "id": "fbed1d06-967c-4eab-9388-ba5cbbc4e580",
      "name": "Embeddings OpenAI",
      "credentials": {
        "openAiApi": {
          "id": "23PvfovnyZJddfoj",
          "name": "OpenAi account"
        }
      }
    },
    {
      "parameters": {
        "mode": "retrieve-as-tool",
        "toolName": "MagentoSandboxCMSPages",
        "toolDescription": "Work with this data collection to find general information about Luma online store (like terms of service, shipping, return).\nUse it to answer product related questions.\nIt is the only source of data to answer about specific products that this store sells.\nStick to the facts you get, don't make things up.\n",
        "qdrantCollection": {
          "__rl": true,
          "value": "cms-pages-1-1536",
          "mode": "list",
          "cachedResultName": "cms-pages-1-1536"
        },
        "options": {
          "searchFilterJson": "{\n  \"should\": [\n    {\n      \"key\": \"metadata.batch\",\n      \"match\": {\n        \"value\": 12345\n      }\n    }\n  ]\n}"
        }
      },
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "typeVersion": 1,
      "position": [
        600,
        200
      ],
      "id": "60ad3682-830a-4d49-bdeb-7f9a8ae3578d",
      "name": "Qdrant Vector Store1",
      "credentials": {
        "qdrantApi": {
          "id": "rlW4tdQaSHOuJ7cD",
          "name": "QdrantApi account"
        }
      }
    },
    {
      "parameters": {
        "options": {}
      },
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "typeVersion": 1.2,
      "position": [
        700,
        420
      ],
      "id": "6a452450-2400-4219-84c8-2a8aac9152a1",
      "name": "Embeddings OpenAI1",
      "credentials": {
        "openAiApi": {
          "id": "23PvfovnyZJddfoj",
          "name": "OpenAi account"
        }
      }
    }
  ],
  "connections": {
    "OpenAI Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "AI Agent",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Window Buffer Memory": {
      "ai_memory": [
        [
          {
            "node": "AI Agent",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "When chat message received": {
      "main": [
        [
          {
            "node": "AI Agent",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Qdrant Vector Store": {
      "ai_tool": [
        [
          {
            "node": "AI Agent",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings OpenAI": {
      "ai_embedding": [
        [
          {
            "node": "Qdrant Vector Store",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "Qdrant Vector Store1": {
      "ai_tool": [
        [
          {
            "node": "AI Agent",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings OpenAI1": {
      "ai_embedding": [
        [
          {
            "node": "Qdrant Vector Store1",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    }
  },
  "pinData": {},
  "meta": {
    "templateCredsSetupCompleted": true,
    "instanceId": "73f6091d18251c3f0e63fd777366fa470083f649bc44bc1239d7325da9dfc99f"
  }
}

Share the output returned by the last node

Information on your n8n setup

  • n8n version:
    1.77.3 (Self Hosted)
  • Database (default: SQLite):
  • default
  • n8n EXECUTIONS_PROCESS setting (default: own, main):
  • Default
  • Running n8n via (Docker, npm, n8n cloud, desktop app):
    self-hosted
  • **Operating system:**S
    Linux

Your error is occurring because your Qdrant collection “cms-pages-1-1536” uses named vectors (specifically “website-data”), but the n8n Qdrant Vector Store node doesn’t provide a way to specify the vector name.

To fix this issue:

  1. Create a new Qdrant collection without named vectors:
  • In Qdrant Cloud or your Qdrant instance, create a new collection with the default vector configuration
  • Migrate your data to this new collection
  1. Use HTTP Request node as a workaround:
  • Replace the problematic Qdrant node with an HTTP Request node
  • Configure it to directly call the Qdrant API with the vector name specified:

json

{
  "vector_name": "website-data",
  "vector": {{$node["Embeddings OpenAI1"].json.embedding}},
  "limit": 5
}
  1. Update n8n: Check if a newer version of n8n (beyond 1.77.3) supports named vectors in the Qdrant node

The error occurs specifically because the Qdrant collection was created with a named vector (“website-data”), but the current version of the n8n Qdrant node doesn’t support this feature yet.

If my solution helped you solve your query, please consider marking it as the answer! A like would make my day if you found it helpful! :mag::sparkles:

Thanks for the workaround offered

In our case it will not work because Qdrant vector DB exists the way it is set for other apps to use, so we can’t change it and be without named vectors.

I guess we have to wait till N8N starts to support named vectors.

Now we are on the version 1.80.4, the error is still there.

I’m having the same issue using the n8n cloud version. I could still change the vecto name in Qdrant. That’s the output from the default data loader sub-node:
{
“response”: [
{
“pageContent”: “Aave Labs unveils Horizon initiative to bring real-world assets to DeFi”,
“metadata”: {
“source”: “blob”,
“blobType”: “text/plain”,
“loc”: {
“lines”: {
“from”: 1,
“to”: 1
}
},
“URL”: “https://www.theblock.co/post/346075/aave-horizon”,
“Title”: “Aave Labs unveils Horizon initiative to bring real-world assets to DeFi”,
“Status”: “UNIQUE”,
“Reason”: “Provides detailed information about Aave’s new Horizon initiative for institutional DeFi adoption”
}
}
]
}